

Analytical Validation of the Thermo Fisher ABI HIV-1 Genotyping Kit for Oxford Nanopore Sequencing Against the Sanger Gold Standard Using the Exatype Platform

Executive Summary

Exatype, a cloud-based DNA-sequence analysis platform, developed by **Hyrax Biosciences**, underpins **HIV drug-resistance testing** for programmes worldwide, supporting more than **1,100 users** across **70+ organisations** in **103 countries** and processing over **150,000 HIV sequences** to date. Its broad adoption - particularly across Global Health Equity settings - has established **Exatype** as a trusted platform for routine Sanger-based **HIV-1 genotyping and reporting**.

Given this widespread adoption, <u>Hyrax Biosciences</u> evaluated whether data generated using the Thermo Fisher ABI HIV-1 Genotyping Kit with Integrase, when sequenced on Oxford Nanopore Technologies (ONT), delivers <u>drug-resistance results</u> equivalent to those generated from Sanger sequencing, with both datasets analysed using the <u>Exatype</u> platform. These findings show that the assay <u>performs consistently</u> across both technologies, with <u>strong concordance in consensus sequences and drug-resistance calls. <u>Exatype</u> served as the <u>shared analytical workflow</u>, <u>enabling direct comparison</u> and <u>simplifying cross-platform interpretation</u>.</u>

Key outcomes:

- Specificity and repeatability: 100% concordance with Sanger and between ONT replicates.
- **Sensitivity**: Consistent detection of resistance mutations at ≥20% prevalence.
- Native vs Rapid ONT workflows validated: both equivalent to Sanger, with trade-offs in depth (Native) and speed (Rapid).
- Exatype-driven standardisation: A unified analytical layer enabling QC, consensus generation, and HIVDB reporting across sequencing technologies.

Background and Rationale

As HIV antiretroviral therapy coverage expands - reaching **29.8 million people** by 2022 (WHO, 2025)¹ - selective pressure has increased the emergence of **HIV drug resistance**, driving demand for **scalable**, **reliable genotyping** (WHO, HIV Drug Resistance)². With laboratories

now incorporating flexible platforms such as ONT alongside traditional Sanger sequencing, a single, standardised workflow becomes increasingly valuable.

This study **validates** the use of the Applied Biosystems HIV-1 Genotyping Kit with Integrase from Thermo Fisher Scientific, sequenced with ONT and benchmarked against Sanger. Both datasets were analysed through hyrax Biosciences Exatype platform, providing a like-for-like comparison and confirming that the assay can be deployed reliably across **multiple sequencing technologies**.

Validation Results

Study design: included 2 samples × 3 replicates for protease (PR) and reverse transcriptase (RT) - as a single amplicon - and integrase (IN) amplified with Thermo Fisher ABI HIV-1 Genotyping Kit with Integrase, sequenced on ONT and Sanger, and analysed using Exatype. Two separate barcoding strategies were tested on the ONT platform, the standard long-read barcoding (termed **Native**) and a short-read barcoding (termed **Rapid**).

Quantitative Outcomes

ONT (Native and Rapid) vs Sanger

Metric	Result	Benchmark / Notes	
Specificity	100% concordance between ONT and Sanger consensus sequences	Validates assay equivalence	
Repeatability	100% concordance across replicates	Demonstrates assay robustness	
Sensitivity	Matching variant detection at ≥20% threshold (industry standard)	Confirms equivalence with Sanger	
Sensitivity threshold	Sanger threshold 15 - 20%³; ONT threshold ≥1%	Improved detection of minor variants with ONT	
Drug-resistance calls	Consistent across Sanger and ONT	Reliable HIV-DR detection	

Native vs Rapid ONT Strategies

Metric	Native ONT	Rapid ONT	Benchmark / Notes
Average Read Length	1,042 nt	353 nt	Both read lengths are sufficient for HIV-DR genotyping, demonstrating ONT's versatility
Average Quality Score	Q=28	Q=24	Quality exceeded the ONT minimum (Q=8)

Average Read Depth / Coverage across pol	111k / 80k	37k/ 12k	Both datasets exceed the minimum coverage (15 reads) needed to reliably detect variants present at ≥20%*
Average Runtime on Exatype	21 min	5 min	Shorter runtime for shorter read lengths (Rapid ONT)
Concordance with Sanger	100%	100%	Consensus sequences were concordant despite variation in sequencing metrics

Key Takeaways:

- Specificity: ONT (Native & Rapid) matches Sanger; identical consensus sequences and HIV-1 drug-resistance calls.
- Sensitivity: Detects variants at ≥20% prevalence; ONT also captures lower-prevalence variants.
- **Speed vs Coverage:** Native = longer reads, higher depth; Rapid = faster analysis with shorter reads.
- Practical Impact: Both strategies support reliable, high-throughput HIV-DR testing.

Analytical and Applied Implications enabled by Hyrax Biosciences' Exatype Platform

This validation demonstrates that the Thermo Fisher ABI HIV-1 Genotyping Kit with Integrase performs consistently when sequenced on ONT, producing drug-resistance results that align with those obtained from Sanger sequencing. **Exatype** served as the **shared analytical environment**, applying the same interpretation rules, thresholds, and reporting structure across both datasets to enable a **direct**, **like-for-like comparison of assay performance**.

Exatype retains compatibility with ≥20% reporting thresholds while also accommodating the richer variant signal available from ONT, supporting programmes moving toward higher-throughput or decentralised sequencing. Automated QC, consensus generation, and standardised reporting remove the need for platform-specific bioinformatics, enabling laboratories to increase capacity and adopt ONT without changing analytical workflows.

Conclusion

This validation confirms that data generated using the Thermo Fisher ABI HIV-1 Genotyping Kit with Integrase on ONT, when analysed through **Exatype**, produces HIV-1 drug-resistance results equivalent to Sanger. Both Native and Rapid ONT workflows demonstrate reliable

^{*}Sequencing depth of the Rapid ONT dataset may not represent all rapid-barcoding strategies.

analytical performance while offering the operational flexibility associated with decentralised sequencing.

Together, these findings position <u>Exatype</u> as a consistent, <u>cross-platform analytical solution</u> that supports ONT adoption in routine testing, surveillance, and decentralised HIV-DR applications while preserving full comparability with established Sanger workflows.

References

- 1. World Health Organisation (WHO). *HIV statistics, globally and by WHO region*, Information Sheet, 2025
- 2. World Health Organisation (WHO), HIV drug resistance
- 3. Steegan et al., 2023, Advancing HIV Drug Resistance Technologies and Strategies: Insights from South Africa's Experience and Future Directions for Resource-Limited Settings, Diagnostics, 13(13):2209