

Analytical Validation Case Study: Exatype for Multi-Target Respiratory Virus Panels

Executive Summary

The COVID-19 pandemic underscored the global need for fast, accurate, and scalable pathogen identification. As respiratory-virus testing expands beyond single-target assays, the combination of multiplexed amplification panels and next-generation sequencing (NGS) has emerged as a powerful approach for comprehensive respiratory pathogen surveillance and identification. At the center of this evolution, hyrax Biosciences' cloud-based genomic analysis platform, hyrax Biosciences' cloud-based genomic analysis platform, <a href="https://example.com/Example.com/Example.com/em

In this **analytical validation study**, **Exatype** was used to analyse datasets generated from **multiple respiratory virus panels** across a **range of sequencing platforms**.

Exatype's Key Capabilities:

- Identification of the infecting virus or co-infections with high confidence,
- Generation of **consensus sequences**, foundational for novel assay design and continuous lineage tracking,
- Analysis and visualisation of coverage across each target region to assess sequencing performance, and
- Quantification of **amino acid and nucleotide variant prevalences**, providing insight into potential changes in viral fitness, transmissibility, or treatment resistance.

Background & Rationale

The emergence of SARS-CoV-2 highlighted the limitations of traditional diagnostic approaches. During the COVID-19 pandemic, timely identification of pathogens - and their evolving variants - became critical to both clinical decision-making and public health response. Exatype played a pivotal role - processing approximately 42% of all SARS-CoV-2 genomes generated across the African continent (>72,000 genomes). This contribution established Hyrax Biosciences as a trusted analytical partner in large-scale genomic surveillance and rapid outbreak response.

Building on this foundation, we present an **analytical validation study demonstrating Exatype's capability for processing multi-target respiratory virus panels**. These assays, which amplify a wide range of pathogens from a single sample, have transformed respiratory testing. When combined with NGS and an analysis solution like Exatype, these assays enable

comprehensive and rapid identification of viruses such as SARS-CoV-2, Influenza A/B and Respiratory Syncytial Virus (RSV).

Validation Results

Study Design

Exatype was used to analyse raw sequencing data from twenty respiratory virus samples obtained from public (n=16)^{1, 2, 3} and collaborator (n=4) sources. The data were generated with **different multi-target assays** (including the Illumina Respiratory Virus Oligo Panel (RVOP), Thermo Fisher Ion AmpliSeq FluAB Research Panel, and Twist Bioscience Respiratory Virus Panel)) across **Illumina**, **Ion Torrent**, and **Oxford Nanopore Technologies** platforms, using standardised, platform-specific workflows.

Quantitative Outcomes

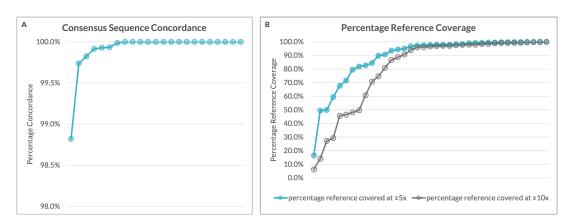


Figure 1: Consensus Sequence Concordance*# and Reference Sequence Coverage

Table 1: Key Outcomes Summary

Analytical Metric	Validation Result	Notes
Pathogen Identification	100% match to expected respiratory viruses*	Accurate identification of all viruses present, including mixed infections
Consensus Sequences	≥98.8% concordance*# (Fig. 1A)	High reproducibility confirms analytical robustness
Coverage Depth	≥85% covered at ≥10× across	Coverage varied across samples and platforms but consistently met analytical thresholds
Sensitivity Threshold	Detection of minor variants ≥10%	Enables monitoring of within-sample diversity and emerging mutations

^{*}for samples and/or regions with sufficient coverage (≥20x for Illumina paired-end reads, ≥30x for Illumina single-end reads, Ion Torrent and Nanopore)

^{*}where comparator consensus sequences were available

Exatype: Analytical Validation and Real-World Genomic Insight

Analytical Insights: Precision Through Integration

Exatype provides a comprehensive analytical framework for **multi-target respiratory virus sequencing**, delivering precision and depth beyond standard pathogen identification. Each analysis produces **complete consensus sequences**, **coverage profiles** across all target regions, and **quantitative amino acid** and **nucleotide variant prevalences**, all generated within a single, integrated workflow. These results enable laboratories and assay developers to **evaluate assay performance**, **confirm amplification success**, and **monitor emerging mutations** with implications for viral fitness, transmissibility, or therapeutic response. By consolidating these functions into one validated platform, **Exatype** ensures **analytical consistency** and **reproducibility** across sequencing technologies and assay formats.

Practical Value: From Analysis to Application

The analytical capabilities of **Exatype** extend beyond assay-specific performance, supporting **standardisation**, **reproducibility**, and **transparent data interpretation** across sequencing technologies. By integrating **Exatype**, laboratories and assay developers gain a unified framework for **comparative analysis**, **performance benchmarking**, and **variant tracking**. This interoperability strengthens data integrity, accelerates research translation, and supports surveillance initiatives where consistent, high-quality results are essential.

Conclusion

This analytical validation confirms that the Exatype platform provides accurate, reproducible, and biologically meaningful analysis of multi-target respiratory virus panels. Across three leading sequencing technologies and multiple commercial assays, Exatype consistently reproduced expected results with high concordance - while providing enhanced visibility into viral genome coverage and variation.

As respiratory virus testing evolves beyond simple detection, **Exatype** enables laboratories to extract deeper genomic insight from their data - supporting not only identification but also surveillance, variant tracking, and public health preparedness. In doing so, **Exatype** establishes an analytical standard for precision, scalability, and insight in pathogen genomics.

References

- 1. <u>Mu et al., 2023, The combined effect of oseltamivir and favipiravir on influenza A virus evolution in patients hospitalized with severe influenza, Antiviral Research, 216: 105657</u>
- 2. <u>Goya et al., 2023, Genomic Characterization of Respiratory Syncytial Virus during 2022-23</u> <u>Outbreak, Washington, USA, Emerging Infectious Diseases, 29 (4): 865-868</u>
- 3. <u>Mehta et al., 2021, Respiratory Co-Infections: Modulators of SARS-CoV-2 Patients' Clinical Sub-Phenotype, Frontiers in Microbiology; 12: 653399</u>